Literal-paraconsistent and literal-paracomplete matrices

نویسندگان

  • Renato A. Lewin
  • Irene F. Mikenberg
چکیده

We introduce a family of matrices that define logics in which paraconsistency and/or paracompleteness occurs only at the level of literals, that is, formulas that are propositional letters or their iterated negations. We give a sound and complete axiomatization for the logic defined by the class of all these matrices, we give conditions for the maximality of these logics and we study in detail several relevant examples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Algebraization of logics defined by literal-paraconsistent or literal-paracomplete matrices

We study the algebraizability of the logics constructed using literal-paraconsistent and literal-paracomplete matrices described by Lewin and Mikenbergin[11] proving that theyare all algebraizable in the sense of Blok We study the algebraizability of the logics constructed using literal-paraconsistent and literal-paracomplete matrices described by Lewin and Mikenberg in [11], proving that they ...

متن کامل

Paraconsistent default reasoning

In this paper, a novel technique called bi-default theory is proposed for handling inconsistent knowledge simultaneously in the context of default logic without leading to triviality of the extension. To this end, the positive and negative transformations of propositional formulas are defined such that the semantic link between a literal and its negation is split. It is proven that the bi-defau...

متن کامل

Minimal Paradefinite Logics for Reasoning with Incompleteness and Inconsistency

Paradefinite (‘beyond the definite’) logics are logics that can be used for handling contradictory or partial information. As such, paradefinite logics should be both paraconsistent and paracomplete. In this paper we consider the simplest semantic framework for defining paradefinite logics, consisting of four-valued matrices, and study the better accepted logics that are induced by these matric...

متن کامل

Modal Extensions of Sub-classical Logics for Recovering Classical Logic

In this paper we introduce non-normal modal extensions of the sub-classical logics CLoN, CluN and CLaN, in the same way that S0.5 extends classical logic. The first modal system is both paraconsistent and paracomplete, while the second one is paraconsistent and the third is paracomplete. Despite being non-normal, these systems are sound and complete for a suitable Kripke semantics. We also show...

متن کامل

Classifying Idiomatic and Literal Expressions Using Vector Space Representations

We describe an algorithm for automatic classification of idiomatic and literal expressions. Our starting point is that idioms and literal expressions occur in different contexts. Idioms tend to violate cohesive ties in local contexts, while literals are expected to fit in. Our goal is to capture this intuition using a vector representation of words. We propose two approaches: (1) Compute inner ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Log. Q.

دوره 52  شماره 

صفحات  -

تاریخ انتشار 2006